Heat loss
Heat is the energy that is transferred between different systems as a result of thermodynamic interactions.
Heat loss is a measure of negative heat transfer through a building’s fabric from the inside to the outside. This can be due to either convection, conduction, radiation, mass transfer, or a combination. The colder the outside temperature, the warmer the inside, and the worse the thermal insulation of the building fabric, the greater the heat loss will be.
Heat loss is typically measured in either kilowatts (kW) or British Thermal Units (BTUs).
U-values (sometimes referred to as heat transfer coefficients or thermal transmittances) are used to measure how effective elements of a building's fabric are at insulating against heat loss (or heat gain). The lower the U-value of an element of a building's fabric, the more slowly heat is able to transmit through it, and so the better it performs as an insulator. Very broadly, the better (i.e. lower) the U-value of a building's fabric, the less energy is required to maintain comfortable conditions inside the building.
The building regulations require that reasonable provision be made to limit heat gains and losses through the fabric of new buildings and works to existing buildings. The approved documents to the buildings regulations set out the limiting standards for the properties of the fabric elements of the building, described in terms of maximum U-values. For more information see: Limiting fabric standards.
Typically, the older a building is, the more it will be susceptible to heat loss. This can be due to a combination of poor (or no) insulation, thermal bridging across the building envelope, single glazing, poor airtightness and so on,
Levels of heat loss will vary depending on the type of building; for example, a terraced house will lose a higher proportion of heat through the floor and roof rather than walls, whilst nearly all the heat loss from a flat will be through the outside walls.
The following estimates indicate the proportionate heat loss from a badly insulated house:
- Up to 25% through the roof.
- Up to 35% through outside walls.
- Up to 25% through doors and windows.
- Up to 15% through ground floors.
(Ref. www.ired.co.uk)
Some of the techniques that can be used to combat heat loss in existing buildings include:
- Draught-proofing.
- Roof insulation.
- Double-glazing.
- Floor insulation.
- Solid wall insulation.
[edit] Related articles on Designing Buildings
- Building performance.
- Emissivity.
- Heat gain.
- Heat pumps and heat waves: How overheating complicates ending gas in the UK.
- Heat transfer.
- Mean radiant temperature.
- Passive building design.
- The cavity wall real performance question.
- Thermal insulation for buildings.
- Thermal mass.
- Thermal resistance.
- U value.
- Vapour barrier.
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February